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Abstract. We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark
degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined
quark state at high baryon density are reproduced. We investigate the equations of state of matters with
different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 12.38.Aw General properties
of QCD (dynamics, confinement, etc.) – 12.39.Jh Nonrelativistic quark model – 21.65.+f Nuclear matter

1 Introduction

It is expected that quarks are observed as deconfined
states in extreme environment: at high density and/or
high temperature, where baryons or thermal pions over-
lap with each other, disappearance of hadron boundaries
may give rise to the quark gluon plasma (QGP). Also the
change of coupling constants and quark mass, due to the
nature of quantum chromodynamics (QCD), is thought
to be one of the origins of the QGP [1]. Recently, many
theoretical calculations have been attempted to draw a
QCD phase diagram [2–4]. The critical temperature of the
hadron-quark phase transition is predicted to be around
150 MeV by lattice simulations [5,6]. For a finite-density
system, the bag model predicts in a qualitative study [7]
that the critical density lies at a few times the normal nu-
clear saturation density. Many efforts are devoted to the
experimental search for the QGP by using high-energy ac-
celerators. There, many indirect signals of the QGP have
been observed [8–10] but a definite conclusion has not
been obtained since theoretical studies are not enough to
characterize the properties of the QGP and hadron gas
at present. It is not clear how hadron matter changes to
quark matter and how the physical properties change at
the hadron-quark transition.

The lattice simulation based on the first principle
is the most reliable method for QCD. It has been ap-
plied to high-temperature and low-density systems un-
der some approximations. At high density, however, the
complex fermion determinant, or the sign problem, makes
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the simulation practically impossible [11]. One of the ap-
proaches for treating finite-density systems is a mean-field
theory which makes the most of its ability for uniform
systems. There are many works with a mean-field treat-
ment, which are incorporated with the chiral restoration
by the Nambu–Jona-Lasinio model [12], the bag model
picture [13], the soliton model picture [14], and so on.
The dynamics of the hadron-quark transition, however,
is not considered in these cases. In these circumstances,
other approaches which are feasible for treating the finite
density and the dynamics are being awaited.

Molecular dynamics (MD) has been successful in treat-
ing many-body nucleon systems. To describe the structure
and the dynamics of many-body nucleon systems, several
MD models were proposed [15–18] and some remarkable
results have been obtained. Advantages of the MD simula-
tion are that one needs very few assumptions a priori and
that a single model can be applied to various problems.
To investigate the properties of hadron and quark mat-
ter and the dynamics of the transition between these two
phases in a unified manner, MD is a natural framework
to be attempted. In this paper we apply a model simi-
lar to quantum molecular dynamics (QMD) [15] to many-
body quark systems, within the framework of the non-
relativistic quark model. Some pioneering works on the
application of MD to quark systems were presented where
transitions caused by increasing density and temperature
were studied from the viewpoint of many-body dynamics:
in [19,20] the Vlasov equation and the Vlasov+MD ap-
proach were used to get the equation of state of matter.
In [21] the quark MD was applied to heavy-ion collisions
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where the creation of particle-antiparticle pairs was taken
into account. In [22], the color gauge symmetry was
treated exactly and the meson exchange potentials were
introduced. In the above studies quarks were treated as
classical particles and there was ambiguity in the defi-
nition of the ground state of the system. In the present
paper, we propose a model which has less ambiguity to
describe the ground state (zero temperature). With this
model we study the mechanism of the baryon-quark tran-
sition and draw the equation of state (EOS) for a wide
range of baryon densities.

This paper is organized as follows. In sect. 2 we ex-
plain the basics of the model in detail. Simulation results
for the three kinds of matters: ud (matter containing the
same number of u and d quarks; it corresponds to sym-
metric nuclear matter), udd (d-quarks twice the number of
u-quarks; neutron matter) and uds (the same number of
u, d and s quarks; Λ matter) by using two kinds of quark
width are given in sect. 3. The summary is given in sect. 4.

2 Molecular dynamics for quark matter

2.1 Wave functions and cooling equations

We start with the total wave function defined by a di-
rect product of n = 3A (A is the baryon number) single-
particle quark Gaussian wave packets in the coordinate
and momentum spaces and state vectors χ with a fixed
flavor, a color and a spin orientation,

Ψ =

n
∏

i=1

1

(πL2)3/4
exp

[

− (ri −Ri)
2

2L2
+
i

h̄
Piri

]

χi , (1)

where L denotes the fixed width of wave packets, and Ri

and Pi are the center of the wave packet of the i-th quark
in the coordinate and momentum spaces, respectively. In-
stead of the antisymmetrization of the total wave function,
the fermionic nature of the system is phenomenologically
treated by introducing a Pauli potential which acts repul-
sively between quarks having the same flavor, color and
spin orientation [23]. The equations of motion for Ri and
Pi are given by the Newtonian equations,

Ṙi =
∂H

∂Pi
, Ṗi = −

∂H

∂Ri
, (2)

whereH denotes the effective Hamiltonian described later.
When we search for the ground state (energy minimum
configuration) of the system, we solve the equations of
motion with friction terms, which we call “cooling equa-
tions of motion”,

Ṙi =
∂H

∂Pi
+ µr

∂H

∂Ri
, Ṗi = −

∂H

∂Ri
+ µp

∂H

∂Pi
, (3)

where µr and µp are negative frictional coefficients. The

cooling is performed until the particles stop (Ṙi = 0). In
the ground state, the momenta Pi have finite values be-
cause of the momentum dependence of the Pauli potential.

In order to simulate the infinite system (matter) by
using a finite number of quarks, we use a cubic cell with
26 mirroring cells under a periodic boundary condition.
The cell size is chosen to be 6 fm throughout this paper.

2.2 Effective Hamiltonian

The effective Hamiltonian consists of three parts as

H = H0 + VPauli − Tspur, (4)

where H0 is the original Hamiltonian which contains a ki-
netic operator, color interaction and meson exchange po-
tential acting between quarks,

H0 ≡
〈

Ψ

∣

∣

∣

∣

∣

n
∑

i=1
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∣

∣

∣

∣

∣

Ψ

〉

. (5)

The expectation value of the kinetic operator is given by

Ei ≡
〈

Ψ
∣

∣

∣
T̂i

∣

∣

∣
Ψ
〉

=
P
2
i

2mi
+

3h̄2

4miL2
+mi. (6)

We employ quark-quark interactions of the following
forms:

V̂color =
1

2
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∑
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, (7)
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, (8)

where r̂ij ≡ |ri − rj | and l means a light flavor, u or d.

The color-dependent interaction V̂color consists of the
linear confining potential with an infrared cut-off at 3 fm
and the one-gluon exchange potential [22] with the Gell-
Mann matrices λa. To include the antisymmetric effect
for the matrix elements of the color space, we use effective

values
〈

χi|λai λaj |χj
〉eff

= 4
〈

χi|λai λaj |χj
〉

[22]. The color
force is approximately canceled between a colored quark
and a white baryon made of quarks with three colors lo-
cated near to each other. In previous works [24–26] a color
magnetic interaction is used to reproduce the mass differ-
ence between the nucleon and the ∆ to study finite sys-
tems. This interaction cannot be included in our model at
present because the color- and spin-dependent interaction
between baryons becomes too strong and causes unphysi-
cal behaviors even in the baryon phase.
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The interaction V̂meson consists of σ-, ω- and ρ-meson
exchange which act between light flavor quarks (u-quarks
and d-quarks), and a φ-meson exchange potential which
acts between s-quarks. In the ρ-meson exchange term, σ3

indicates the third component of Pauli matrices for the
isospin. We modify the σ exchange potential of Yukawa
type with a small non-linearity parameter ε. This corre-
sponds to a density-dependent potential or a non-linear σ
term in the relativistic mean-field theory (RMF) where
higher-order terms in the σ field are introduced to re-
produce the saturation property of the symmetric nuclear
matter. For simplicity, we have written eq. (8) in the form
of an operator. In practice, however, the power by 1−ε of
the σ exchange potential is performed after evaluating the
expectation value. The parameters in the meson exchange
potentials are adjusted to reproduce the baryon-baryon
interactions as described in sect. 2.3.3.

The lack of antisymmetrization is compensated by us-
ing a Pauli potential,

VPauli =
Cp

(q0p0)
3 exp

[

− (Ri −Rj)
2

2q20
− (Pi −Pj)

2

2p20

]

δχiχj ,

(9)
where q0, p0 and Cp are parameters determined in
sect. 2.3.2. Antisymmetrized wave functions are not used
because it takes a CPU time proportional to the fourth
power of the particle number [16,17]. On the other hand,
MD without antisymmetrization requires CPU times pro-
portional to the second power of the particle number. At
present, simulation with antisymmetrization is not practi-
cally possible for a system with several hundreds of parti-
cles. Furthermore, the way to antisymmetrize wave func-
tions with a periodic boundary condition has not been
established yet.

We have to subtract the spurious zero-point energy of
the center-of-mass motion of clusters [17,18],

Tspur =

n
∑

i=1

3h̄2

4miL2
1

Mi
, (10)

Mi ≡
n
∑

j=1

fij , (11)

fij ≡
{

1 , (Rij ≤ af ) ,

exp
[

− (Rij−af )
2

w2

f

]

, (Rij > af ) ,
(12)

where Rij ≡ |Ri −Rj | and Mi is the “mass number” of
the fragment to which the wave packet i belongs, which
is the sum of “friendship” fij with other particles. To ap-
ply the model to various densities, we introduce density-
normalized parameters of cluster separation in the friend-
ship as

af = a0

(

ρ0
ρ

)1/3

, wf = w0

(

ρ0
ρ

)1/3

, (13)

where ρ0 means the normal nuclear density 0.17 fm−3.

2.3 Choice of parameters

2.3.1 Quark model parameters and friendship

We use the constituent-quark mass mu,d = 300 MeV for
light quarks throughout this simulation. For the color po-
tential, 900 MeV/fm is used for the string tension K and
1.25 for the QCD fine-structure constant αs, which are
typical of quark models [27].

The parameters in the friendship are chosen as a0 =
0.3 fm and w0 = 0.5 fm, so that the sum of the friend-
ship Mi ≈ 3 when the system clusterizes as baryons and
Mi ≈ 1 when quarks do not make clusters.

The width of the quarks L is the most important pa-
rameter in this model since it is directly related to the
density at which the baryon-quark transition occurs. We
use two different widths by considering the masses of the
isolated nucleon N and the lambda particle Λ. To mini-
mize the energy (mass) of a nucleon, L needs to be 0.43 fm.
However, the nucleon mass is too large (about 2400 MeV)
with this value of L. The reason of this overestimation is
that the ground-state kinetic energy per quark in a nu-

cleon,
2

3

3h̄2

4mu,dL2
, has a large value of 351 MeV, while the

kinetic energy of a quark in a nucleon is roughly estimated
to be 50–80 MeV from the uncertainty principle. There-
fore, we employ “effective” widths Leff in evaluating Ei
(eq. (6)) and Tspur (eq. (10)). The ground-state kinetic
energy per quark in a nucleon becomes 65 MeV if we use
Leff = 1.0 fm.

Our first choice is to use L = 0.43 fm, Leffu,d = 1.0 fm.

We call this choice as “parameter set (I)”. This combina-
tion still gives a slightly large value of the nucleon mass,
MN ≈ 1500 MeV. We select a strange-quark mass of
500 MeV which is often used in quark models. Then the
difference of masses between N and Λ is reproduced by
adjusting the effective width to be Leffs = 0.6 fm.

Once the effective width Leff for kinetic energy is em-
ployed, the nucleon mass does not have a minimum with
respect to L. Then the second choice is made to give a
proper nucleon mass value, MN ≈ 940 MeV, by chang-
ing L to be 0.33 fm (but with the same values of Leff

as before). Since the mass difference between N and Λ
cannot be reproduced by adjusting the effective width in
this case, we change the strange-quark mass to 567 MeV
but the effective width for the s-quark is the same as for
the u- and d-quark, Leffs = 1.0 fm. We call this choice as
“parameter set (II)”.

2.3.2 Pauli potential

For the Pauli potential, the parameters Cp, q0, p0 are de-
termined by fitting the kinetic energy to the exact Fermi
gas at zero temperature. We determine these values by
solving the cooling equations (3) for udmatter, uddmatter
and uds matter where only the Pauli potential is consid-
ered [23]. Figure 1 shows the classical and non-relativistic
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Fig. 1. Energy per baryon of the free Fermi gas. The lines
show the theoretical exact values of ud, udd and uds matter.
The marks are the kinetic energies calculated by MD with only
the Pauli potential.
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Fig. 2. Binding energies per baryon for ud, udd and udsmatter
calculated by the baryon cooling. The saturation is seen for the
ud matter, but it is not seen for the udd and uds matter.

kinetic energy of the Fermi gas. The lines indicate the val-
ues of the exact Fermi gas energy for ud matter, udd mat-
ter and uds matter. The marks show the kinetic energy of
each matter, whose values are obtained by using the fol-
lowing parameters: we adopt q0 = 1.6 fm, p0 = 120 MeV
and Cp = 131 MeV for light quarks and Cp = 79 MeV
for s-quarks. We use these parameters for both param-
eter sets (I) and (II) since the difference is slight. Here
three different colors and two different spins are assumed
for each matter. It is seen that the difference between ud
matter and udd matter is small. By introducing heavy
s-quarks, the Fermi energy of uds matter becomes lower
than that of ud matter. Note that the Pauli potential gives
a spurious potential energy to the system, which should
be renormalized into other effective potential terms [23].
One possibility to avoid this problem is, instead of us-
ing the Pauli potential, to maintain the Pauli principle
of the system by stochastic rearrangements of the parti-
cle momenta [28]. This model was originally developed for

1.0ρ0 2.0ρ0

2.5ρ0 2.6ρ0

2.7ρ0 3.0ρ0

Fig. 3. Snapshots of ud matter with L = 0.43 fm at various
densities. Using the criterion of eq. (15), confined quarks are
plotted with white and deconfined quarks with their own color.
At 1ρ0 all quarks are confined. As the density increases decon-
fined quarks or their colors begin to appear. Most of the quarks
are deconfined at 3ρ0.

nucleon systems and was applied also to the quark system
very recently [29].

2.3.3 Meson exchange potentials

Though the meson exchange potentials do not affect the
baryon-quark transition, we adjust the meson exchange
potentials to discuss the EOS of strange and normal nu-
clear matters. Prameters are determined to get the ap-
propriate ground-state energy of “baryon matter” by fric-
tional cooling with the constraint that quarks form baryon
clusters (baryonization constraint). First, we randomly
distribute baryons which are composed of three quarks
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Fig. 4. Density dependence of energy per baryon for ud, udd
and uds matter in case of parameter set (I) (L = 0.43 fm).
The dashed lines indicate the cases of baryon cooling and solid
lines quark cooling.
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Fig. 5. Same as fig. 4, but with the parameter set (II) (L =
0.33 fm).

and solve the cooling equations with the baryonization
constraint as

Ṙi =
1

3

∑

j∈{i}

[

∂H

∂Pj
+ µr

∂H

∂Rj

]

,

Ṗi =
1

3

∑

j∈{i}

[

− ∂H

∂Rj
+ µp

∂H

∂Pj

]

; (14)

here {i} means a set of three quarks in a baryon to which
the i-th quark belongs [22]. We call this cooling “baryon
cooling”. In fig. 2 the baryon density dependence of the
energy per baryon is shown for ud matter, udd matter and
uds matter. Note that in this calculation with the bary-
onization constraint, the color-dependent interactions are
exactly canceled between the white baryons. For the σ
exchange potential we use gσq = 3.09, mσ = 400 MeV,
Lσ = 1.2 fm and ε = 0.1, for the ω exchange potential
gωq = 4.98, mω = 782 MeV and Lω = 0.7 fm, and for
the ρ exchange potential gρq = 9.0, mρ = 770 MeV and
Lρ = 1.2 fm. In order to reproduce the well-known prop-
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Fig. 6. Same as fig. 4, but under the electric charge-neutral
condition.
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Fig. 7. Same as fig. 5, but under the electric charge-neutral
condition.

erties of matter, we have introduced the effective widths
Lσ, Lω, Lρ and Lφ for each meson exchange term. We fit
the binding energy of ud matter to 16.5 MeV/nucleon at
1ρ0. The EOS of Λ matter, which depends on the φ ex-
change potential is unsettled yet [30]. In order to obtain
the saturation of uds matter, we need to introduce an at-
tractive K exchange interaction between u and s or d and
s quarks. However, the K-meson exchange is prohibited
according to the RMF model. Here we have only a repul-
sive φ exchange interaction between s-quarks for simplic-
ity. The relevant parameters are gφq =

√
2gωq = 7.04 [30],

mφ = 1020 MeV and Lφ = 0.7 fm. Even if we use another
value, e.g. Lφ ∼ 1 fm, the behavior of the EOS does not
change noticeably.

3 Results for the finite-density system

Here we investigate stability and structure of quark mat-
ter in the ground state (zero temperature) for a wide
range of densities. We solve the cooling equations (3) with
quark degrees of freedom. We call this cooling “quark
cooling” in contrast to the baryon cooling. Snapshots of
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Fig. 8. Density dependence of Y defined by eq. (16) for ud, udd and uds matter in case of the parameter set (II) (L = 0.33 fm).

the ground state of ud matter with the parameter set (I)
(L = 0.43 fm) are displayed in fig. 3. Three quarks in
red, green and blue located within a distance dcluster are
considered to be confined as a baryon,

|Ri −Rj | < dcluster,

|Rj −Rk| < dcluster,

|Rk −Ri| < dcluster,

{i, j, k} = {red, green,blue},
(15)

where we use dcluster = 0.7 fm. Quarks judged to be in a
confined state are plotted in white and those deconfined
in their own color. At the normal baryon density 1ρ0 all
quarks are confined as baryons. As density increases, some
quarks become deconfined and the confined and the decon-
fined states coexist around 2.5ρ0. Most of the quarks are
deconfined at high baryon density ρ ≥ 3ρ0. The snapshots
for the parameter set (II) look almost the same as for the
parameter set (I) except for the value of the density. The
ground-state energies of ud, udd and uds matters with the
parameter set (I) are shown by solid lines in fig. 4. The
vertical axis indicates the energy per baryon. For compar-
ison, the case of baryon cooling is shown by thin dashed
lines. The energy by quark cooling agrees with that by
baryon cooling at low density. This means that quarks are
confined as baryons. At a certain density, a baryon-quark
transition occurs and the energy decreases. The mech-
anism of the baryon-quark transition in our dynamical
model is as follows. If confined quarks are released from
a baryon, their kinetic energy, most of which has been
the zero-point energy, decreases. On the other hand, the
potential energy increases due to the confinement force.
Above a certain density, the increase of potential energy
in deconfinement states gets smaller due to the existence
of many other quarks in the environment. In this way, the
decrease of the kinetic energy is superior to the increase
of potential energy.

In our result with the parameter set (I), the critical
density is lower than that usually expected. The ground-
state energies by the parameter set (II) (L = 0.33 fm) are
shown in fig. 5. The critical point of the baryon-quark
transition is higher than that given by the parameter
set (I). This implies that the transition occurs due to the
density overlap of a quark with those in other baryons.

Figure 6 shows the energies for the three kinds of mat-
ters under the electric-charge neutral condition with the
parameter set (I). The difference compared to fig. 4 is
that the energy of the relativistic electron is added to the
energy of ud matter. Below 6ρ0 the energy of udd mat-
ter is the lowest. Judging from the behavior of the curves,
however, ud matter with the electron becomes more stable
than uddmatter above 6ρ0. Figure 7 shows the same quan-
tity but for the parameter set (II). At 8ρ0 ud matter with
the electron energy becomes more stable than udd matter.

The stability of strange matter has long attracted the
interest of many nuclear and astro-physicists [31–33]. Our
present result shows that udsmatter is not favored even at
high density. However, we cannot give a definite statement
since our EOS of uds matter shows an ambiguity caused
by the ignorance of the Λ-Λ interaction. The width of
s-quarks and interactions concerning s-quarks influence
the stability as well.

Here we have examined three kinds of fixed-flavor mat-
ter for simplicity. For more realistic studies of the matter
realized in nature such as the core region of neutron stars,
however, a simulation of matter in beta equilibrium is nec-
essary. The most stable matter with non-integer u-d-s pro-
portion would be close to udd matter at lower density, and
between udd and ud matter at higher density. With the
parameter set (I) there are density regions where the slope
of E/A versus ρ/ρ0 is negative in fig. 6. Generally such a
situation is not realized by forming non-uniform struc-
ture. In our case, however, the small size of the simulation
box and the introduction of density-dependent parame-
ters (13) caused this problem. Therefore, we regard the
results of the parameter set (I) as unrealistic.

Now, let us define a quantity Y which indicates the
degree of deconfinement as

Y =





〈∣

∣

∣

∣

∣

n
∑

i

Vcolor (Ri −R)

∣

∣

∣

∣

∣

2〉

R





1/2

, (16)

where R is the position of a test particle in any color,
Vcolor is the color potential which the test particle feels and
〈〉

R
means the average over R which is sampled for 10000

points. If all quarks are confined in compact baryons, the
value of Y becomes zero. Figure 8 shows the density de-
pendences of Y for the parameter set (II). The value of
Y is small at low density. From 3ρ0 to 5ρ0 Y increases
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gradually. This gradual change of Y does not necessarily
indicate a second-order phase transition, since the mixed
phase in the first-order phase transition may also show a
similar behavior of physical quantities.

4 Summary

Many-body quark systems were studied by MD where the
ground state was defined in a definite manner in terms
of a Pauli potential. The EOSs were reproduced for three
kinds of baryon matters with effective meson exchange in-
teractions between quarks. The baryon-quark transition
is seen when the baryon density increases. We have used
two quark widths, L = 0.43 fm and L = 0.33 fm. The
density at which the baryon-quark phase transition oc-
curs is different for the two widths, since the transition is
caused by the overlap of the quarks. In case of the larger
value of L = 0.43 fm the baryon-quark transition occurs
at rather low density, around 3ρ0. For the L = 0.33 fm
case, the transition occurs around 5ρ0, which is consistent
with other theoretical calculations.

We have compared three kinds of matters with
different u-d-s compositions: ud, udd and uds. Our results
show that the ud matter is the most stable among them
at high baryon density and the strange uds matter is not
stable. For the interaction and EOS of uds or Λ matter,
there would be still room for improvement to take into
account future experiments. For the color interaction, the
color magnetic interaction is necessary as a color-, spin-
and flavor-dependent interaction. The medium effects
of constituent-quark masses by the chiral symmetry
restoration are also important to discuss the stability.
A possibility to include the medium effect is to use
the density-dependent quark mass model (DDQM) [34].
However, the quark mass is derived there from the global
density and is common for all quarks. This prescription
may be too simple since the individual particle motion is
essential in MD. A similar discussion can be done for the
coupling constant αs.

It is necessary to include the q̄q creation/annihilation
process to extend this model to the finite-temperature
systems. The lack of antisymmetrization is also an open
problem.

Y.A. is grateful to T. Tanigawa, H. Koura, T. Tatsumi, T. Hat-
suda, Y. Maezawa and T. Endo for their valuable discussions.
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